Перевод: с английского на все языки

со всех языков на английский

the Crimean War

  • 1 Crimean

    Crimean /kraɪˈmi:ən/
    a.
    della Crimea: (stor.) the Crimean War, la guerra di Crimea.

    English-Italian dictionary > Crimean

  • 2 Crimean

    Crimean [kraɪ'mɪən]
    1 noun
    Criméen(enne) m,f
    criméen
    ►► the Crimean War la guerre de Crimée

    Un panorama unique de l'anglais et du français > Crimean

  • 3 war

    [wɔː]
    n
    - Great Patriotic war - all-out total war
    - atomic war
    - conventional war
    - defensive war
    - limited war
    - offensive war
    - thermonuclear war
    - war of manoeuvre
    - in the war
    - declare war
    - be at war with smb
    - wage war
    - ban war
    - outlaw war
    - end a war
    - levy war on smb
    - lose war
    - escalate a war
    - win war
    - all is fair in love and war
    USAGE:
    (1.) Найменование войн, за исключением мировых, употребляются с определенным артиклем: the Crimean War Крымская война; the Persian War Персидская война. Когда существительное war употребляется с описательным определением, перед ним употребляется неопределенный артикль: a neauclear war ядерная война. (2.) Русские первая (вторая) мировая война могут соответствовать двум конструкциям: World War One (Two) или The second (the first) World War

    English-Russian combinatory dictionary > war

  • 4 war

    n война (1). Название войн, за исключением мировых, употребляются с определенным артиклем:

    the Crimean War — Крымская война,

    the Persian War — Персидская война.

    (2). Русские первая (вторая) мировая война могут соответствовать двум конструкциям:

    World War One (Two) или The second (the first) World War.

    English-Russian word troubles > war

  • 5 Crimean

    adj. \/kraɪˈmiːən\/
    på\/fra Krim, Krim-
    the Crimean War Krimkrigen

    English-Norwegian dictionary > Crimean

  • 6 the Charge of the Light Brigade

    Общая лексика: Атака лёгкой кавалерии (a disastrous charge of British cavalry against Russian forces during the Battle of Balaclava on 25 October 1854 in the Crimean War)

    Универсальный англо-русский словарь > the Charge of the Light Brigade

  • 7 Crompton, Rookes Evelyn Bell

    [br]
    b. 31 May 1845 near Thirsk, Yorkshire, England
    d. 15 February 1940 Azerley Chase, Ripon, Yorkshire, England
    [br]
    English electrical and transport engineer.
    [br]
    Crompton was the youngest son of a widely travelled diplomat who had retired to the country and become a Whig MP after the Reform Act of 1832. During the Crimean War Crompton's father was in Gibraltar as a commander in the militia. Young Crompton enrolled as a cadet and sailed to Sebastopol, visiting an older brother, and, although only 11 years old, he qualified for the Crimean Medal. Returning to England, he was sent to Harrow, where he showed an aptitude for engineering. In the holidays he made a steam road engine on his father's estate. On leaving school he was commissioned into the Rifle Brigade and spent four years in India, where he worked on a system of steam road haulage to replace bullock trains. Leaving the Army in 1875, Crompton bought a share in an agricultural and general engineering business in Chelmsford, intending to develop his interests in transport. He became involved in the newly developing technology of electric arc lighting and began importing electric lighting equipment made by Gramme in Paris. Crompton soon decided that he could manufacture better equipment himself, and the Chemlsford business was transformed into Crompton \& Co., electrical engineers. After lighting a number of markets and railway stations, Crompton won contracts for lighting the new Law Courts in London, in 1882, and the Ring Theatre in Vienna in 1883. Crompton's interests then broadened to include domestic electrical appliances, especially heating and cooking apparatus, which provided a daytime load when lighting was not required. In 1899 he went to South Africa with the Electrical Engineers Volunteer Corps, providing telegraphs and searchlights in the Boer War. He was appointed Engineer to the new Road Board in 1910, and during the First World War worked for the Government on engineering problems associated with munitions and tanks. He believed strongly in the value of engineering standards, and in 1906 became the first Secretary of the International Electrotechnical Commission.
    [br]
    Bibliography
    Further Reading
    B.Bowers, 1969, R.E.B.Crompton. Pioneer Electrical Engineer, London: Science Museum.
    BB

    Biographical history of technology > Crompton, Rookes Evelyn Bell

  • 8 Crimea

    Cri·mea
    [kraɪˈmi:ə]
    the \Crimea die Krim
    the \Crimean War der Krimkrieg
    * * *
    [kraI'mɪə]
    n (GEOG)
    Krim f; (inf = Crimean War) der Krimkrieg
    * * *
    Crimea [kraıˈmıə] s Krim f

    English-german dictionary > Crimea

  • 9 Armstrong, Sir William George, Baron Armstrong of Cragside

    [br]
    b. 26 November 1810 Shieldfield, Newcastle upon Tyne, England
    d. 27 December 1900 Cragside, Northumbria, England
    [br]
    English inventor, engineer and entrepreneur in hydraulic engineering, shipbuilding and the production of artillery.
    [br]
    The only son of a corn merchant, Alderman William Armstrong, he was educated at private schools in Newcastle and at Bishop Auckland Grammar School. He then became an articled clerk in the office of Armorer Donkin, a solicitor and a friend of his father. During a fishing trip he saw a water-wheel driven by an open stream to work a marble-cutting machine. He felt that its efficiency would be improved by introducing the water to the wheel in a pipe. He developed an interest in hydraulics and in electricity, and became a popular lecturer on these subjects. From 1838 he became friendly with Henry Watson of the High Bridge Works, Newcastle, and for six years he visited the Works almost daily, studying turret clocks, telescopes, papermaking machinery, surveying instruments and other equipment being produced. There he had built his first hydraulic machine, which generated 5 hp when run off the Newcastle town water-mains. He then designed and made a working model of a hydraulic crane, but it created little interest. In 1845, after he had served this rather unconventional apprenticeship at High Bridge Works, he was appointed Secretary of the newly formed Whittle Dene Water Company. The same year he proposed to the town council of Newcastle the conversion of one of the quayside cranes to his hydraulic operation which, if successful, should also be applied to a further four cranes. This was done by the Newcastle Cranage Company at High Bridge Works. In 1847 he gave up law and formed W.G.Armstrong \& Co. to manufacture hydraulic machinery in a works at Elswick. Orders for cranes, hoists, dock gates and bridges were obtained from mines; docks and railways.
    Early in the Crimean War, the War Office asked him to design and make submarine mines to blow up ships that were sunk by the Russians to block the entrance to Sevastopol harbour. The mines were never used, but this set him thinking about military affairs and brought him many useful contacts at the War Office. Learning that two eighteen-pounder British guns had silenced a whole Russian battery but were too heavy to move over rough ground, he carried out a thorough investigation and proposed light field guns with rifled barrels to fire elongated lead projectiles rather than cast-iron balls. He delivered his first gun in 1855; it was built of a steel core and wound-iron wire jacket. The barrel was multi-grooved and the gun weighed a quarter of a ton and could fire a 3 lb (1.4 kg) projectile. This was considered too light and was sent back to the factory to be rebored to take a 5 lb (2.3 kg) shot. The gun was a complete success and Armstrong was then asked to design and produce an equally successful eighteen-pounder. In 1859 he was appointed Engineer of Rifled Ordnance and was knighted. However, there was considerable opposition from the notably conservative officers of the Army who resented the intrusion of this civilian engineer in their affairs. In 1862, contracts with the Elswick Ordnance Company were terminated, and the Government rejected breech-loading and went back to muzzle-loading. Armstrong resigned and concentrated on foreign sales, which were successful worldwide.
    The search for a suitable proving ground for a 12-ton gun led to an interest in shipbuilding at Elswick from 1868. This necessitated the replacement of an earlier stone bridge with the hydraulically operated Tyne Swing Bridge, which weighed some 1450 tons and allowed a clear passage for shipping. Hydraulic equipment on warships became more complex and increasing quantities of it were made at the Elswick works, which also flourished with the reintroduction of the breech-loader in 1878. In 1884 an open-hearth acid steelworks was added to the Elswick facilities. In 1897 the firm merged with Sir Joseph Whitworth \& Co. to become Sir W.G.Armstrong Whitworth \& Co. After Armstrong's death a further merger with Vickers Ltd formed Vickers Armstrong Ltd.
    In 1879 Armstrong took a great interest in Joseph Swan's invention of the incandescent electric light-bulb. He was one of those who formed the Swan Electric Light Company, opening a factory at South Benwell to make the bulbs. At Cragside, his mansion at Roth bury, he installed a water turbine and generator, making it one of the first houses in England to be lit by electricity.
    Armstrong was a noted philanthropist, building houses for his workforce, and endowing schools, hospitals and parks. His last act of charity was to purchase Bamburgh Castle, Northumbria, in 1894, intending to turn it into a hospital or a convalescent home, but he did not live long enough to complete the work.
    [br]
    Principal Honours and Distinctions
    Knighted 1859. FRS 1846. President, Institution of Mechanical Engineers; Institution of Civil Engineers; British Association for the Advancement of Science 1863. Baron Armstrong of Cragside 1887.
    Further Reading
    E.R.Jones, 1886, Heroes of Industry', London: Low.
    D.J.Scott, 1962, A History of Vickers, London: Weidenfeld \& Nicolson.
    IMcN

    Biographical history of technology > Armstrong, Sir William George, Baron Armstrong of Cragside

  • 10 Nobel, Alfred Bernhard

    [br]
    b. 21 October 1833 Stockholm, Sweden
    d. 10 December 1896 San Remo, Italy
    [br]
    Swedish industrialist, inventor of dynamite, founder of the Nobel Prizes.
    [br]
    Alfred's father, Immanuel Nobel, builder, industrialist and inventor, encouraged his sons to follow his example of inventiveness. Alfred's education was interrupted when the family moved to St Petersburg, but was continued privately and was followed by a period of travel. He thus acquired a good knowledge of chemistry and became an excellent linguist.
    During the Crimean War, Nobel worked for his father's firm in supplying war materials. The cancellation of agreements with the Russian Government at the end of the war bankrupted the firm, but Alfred and his brother Immanuel continued their interest in explosives, working on improved methods of making nitroglycerine. In 1863 Nobel patented his first major invention, a detonator that introduced the principle of detonation by shock, by using a small charge of nitroglycerine in a metal cap with detonating or fulminating mercury. Two years later Nobel set up the world's first nitroglycerine factory in an isolated area outside Stockholm. This led to several other plants and improved methods for making and handling the explosive. Yet Nobel remained aware of the dangers of liquid nitroglycerine, and after many experiments he was able in 1867 to take out a patent for dynamite, a safe, solid and pliable form of nitroglycerine, mixed with kieselguhr. At last, nitroglycerine, discovered by Sobrero in 1847, had been transformed into a useful explosive; Nobel began to promote a worldwide industry for its manufacture. Dynamite still had disadvantages, and Nobel continued his researches until, in 1875, he achieved blasting gelatin, a colloidal solution of nitrocellulose (gun cotton) in nitroglycerine. In many ways it proved to be the ideal explosive, more powerful than nitroglycerine alone, less sensitive to shock and resistant to moisture. It was variously called Nobel's Extra Dynamite, blasting gelatin and gelignite. It immediately went into production.
    Next, Nobel sought a smokeless powder for military purposes, and in 1887 he obtained a nearly smokeless blasting powder using nitroglycerine and nitrocellulose with 10 per cent camphor. Finally, a progressive, smokeless blasting powder was developed in 1896 at his San Remo laboratory.
    Nobel's interests went beyond explosives into other areas, such as electrochemistry, optics and biology; his patents amounted to 355 in various countries. However, it was the manufacture of explosives that made him a multimillionaire. At his death he left over £2 million, which he willed to funding awards "to those who during the preceding year, shall have conferred the greatest benefit on mankind".
    [br]
    Bibliography
    1875, On Modern Blasting Agents, Glasgow (his only book).
    Further Reading
    H.Schuck et al., 1962, Nobel, the Man and His Prizes, Amsterdam.
    E.Bergengren, 1962, Alfred Nobel, the Man and His Work, London and New York (includes a supplement on the prizes and the Nobel institution).
    LRD

    Biographical history of technology > Nobel, Alfred Bernhard

  • 11 Nobel, Immanuel

    [br]
    b. 1801 Gävle, Sweden
    d. 3 September 1872 Stockholm, Sweden
    [br]
    Swedish inventor and industrialist, particularly noted for his work on mines and explosives.
    [br]
    The son of a barber-surgeon who deserted his family to serve in the Swedish army, Nobel showed little interest in academic pursuits as a child and was sent to sea at the age of 16, but jumped ship in Egypt and was eventually employed as an architect by the pasha. Returning to Sweden, he won a scholarship to the Stockholm School of Architecture, where he studied from 1821 to 1825 and was awarded a number of prizes. His interest then leaned towards mechanical matters and he transferred to the Stockholm School of Engineering. Designs for linen-finishing machines won him a prize there, and he also patented a means of transforming rotary into reciprocating movement. He then entered the real-estate business and was successful until a fire in 1833 destroyed his house and everything he owned. By this time he had married and had two sons, with a third, Alfred (of Nobel Prize fame; see Alfred Nobel), on the way. Moving to more modest quarters on the outskirts of Stockholm, Immanuel resumed his inventions, concentrating largely on India rubber, which he applied to surgical instruments and military equipment, including a rubber knapsack.
    It was talk of plans to construct a canal at Suez that first excited his interest in explosives. He saw them as a means of making mining more efficient and began to experiment in his backyard. However, this made him unpopular with his neighbours, and the city authorities ordered him to cease his investigations. By this time he was deeply in debt and in 1837 moved to Finland, leaving his family in Stockholm. He hoped to interest the Russians in land and sea mines and, after some four years, succeeded in obtaining financial backing from the Ministry of War, enabling him to set up a foundry and arms factory in St Petersburg and to bring his family over. By 1850 he was clear of debt in Sweden and had begun to acquire a high reputation as an inventor and industrialist. His invention of the horned contact mine was to be the basic pattern of the sea mine for almost the next 100 years, but he also created and manufactured a central-heating system based on hot-water pipes. His three sons, Ludwig, Robert and Alfred, had now joined him in his business, but even so the outbreak of war with Britain and France in the Crimea placed severe pressures on him. The Russians looked to him to convert their navy from sail to steam, even though he had no experience in naval propulsion, but the aftermath of the Crimean War brought financial ruin once more to Immanuel. Amongst the reforms brought in by Tsar Alexander II was a reliance on imports to equip the armed forces, so all domestic arms contracts were abruptly cancelled, including those being undertaken by Nobel. Unable to raise money from the banks, Immanuel was forced to declare himself bankrupt and leave Russia for his native Sweden. Nobel then reverted to his study of explosives, particularly of how to adapt the then highly unstable nitroglycerine, which had first been developed by Ascanio Sobrero in 1847, for blasting and mining. Nobel believed that this could be done by mixing it with gunpowder, but could not establish the right proportions. His son Alfred pursued the matter semi-independently and eventually evolved the principle of the primary charge (and through it created the blasting cap), having taken out a patent for a nitroglycerine product in his own name; the eventual result of this was called dynamite. Father and son eventually fell out over Alfred's independent line, but worse was to follow. In September 1864 Immanuel's youngest son, Oscar, then studying chemistry at Uppsala University, was killed in an explosion in Alfred's laboratory: Immanuel suffered a stroke, but this only temporarily incapacitated him, and he continued to put forward new ideas. These included making timber a more flexible material through gluing crossed veneers under pressure and bending waste timber under steam, a concept which eventually came to fruition in the form of plywood.
    In 1868 Immanuel and Alfred were jointly awarded the prestigious Letterstedt Prize for their work on explosives, but Alfred never for-gave his father for retaining the medal without offering it to him.
    [br]
    Principal Honours and Distinctions
    Imperial Gold Medal (Russia) 1853. Swedish Academy of Science Letterstedt Prize (jointly with son Alfred) 1868.
    Bibliography
    Immanuel Nobel produced a short handwritten account of his early life 1813–37, which is now in the possession of one of his descendants. He also had published three short books during the last decade of his life— Cheap Defence of the Country's Roads (on land mines), Cheap Defence of the Archipelagos (on sea mines), and Proposal for the Country's Defence (1871)—as well as his pamphlet (1870) on making wood a more physically flexible product.
    Further Reading
    No biographies of Immanuel Nobel exist, but his life is detailed in a number of books on his son Alfred.
    CM

    Biographical history of technology > Nobel, Immanuel

  • 12 Brunel, Isambard Kingdom

    [br]
    b. 9 April 1806 Portsea, Hampshire, England
    d. 15 September 1859 18 Duke Street, St James's, London, England
    [br]
    English civil and mechanical engineer.
    [br]
    The son of Marc Isambard Brunel and Sophia Kingdom, he was educated at a private boarding-school in Hove. At the age of 14 he went to the College of Caen and then to the Lycée Henri-Quatre in Paris, after which he was apprenticed to Louis Breguet. In 1822 he returned from France and started working in his father's office, while spending much of his time at the works of Maudslay, Sons \& Field.
    From 1825 to 1828 he worked under his father on the construction of the latter's Thames Tunnel, occupying the position of Engineer-in-Charge, exhibiting great courage and presence of mind in the emergencies which occurred not infrequently. These culminated in January 1828 in the flooding of the tunnel and work was suspended for seven years. For the next five years the young engineer made abortive attempts to find a suitable outlet for his talents, but to little avail. Eventually, in 1831, his design for a suspension bridge over the River Avon at Clifton Gorge was accepted and he was appointed Engineer. (The bridge was eventually finished five years after Brunel's death, as a memorial to him, the delay being due to inadequate financing.) He next planned and supervised improvements to the Bristol docks. In March 1833 he was appointed Engineer of the Bristol Railway, later called the Great Western Railway. He immediately started to survey the route between London and Bristol that was completed by late August that year. On 5 July 1836 he married Mary Horsley and settled into 18 Duke Street, Westminster, London, where he also had his office. Work on the Bristol Railway started in 1836. The foundation stone of the Clifton Suspension Bridge was laid the same year. Whereas George Stephenson had based his standard railway gauge as 4 ft 8½ in (1.44 m), that or a similar gauge being usual for colliery wagonways in the Newcastle area, Brunel adopted the broader gauge of 7 ft (2.13 m). The first stretch of the line, from Paddington to Maidenhead, was opened to traffic on 4 June 1838, and the whole line from London to Bristol was opened in June 1841. The continuation of the line through to Exeter was completed and opened on 1 May 1844. The normal time for the 194-mile (312 km) run from Paddington to Exeter was 5 hours, at an average speed of 38.8 mph (62.4 km/h) including stops. The Great Western line included the Box Tunnel, the longest tunnel to that date at nearly two miles (3.2 km).
    Brunel was the engineer of most of the railways in the West Country, in South Wales and much of Southern Ireland. As railway networks developed, the frequent break of gauge became more of a problem and on 9 July 1845 a Royal Commission was appointed to look into it. In spite of comparative tests, run between Paddington-Didcot and Darlington-York, which showed in favour of Brunel's arrangement, the enquiry ruled in favour of the narrow gauge, 274 miles (441 km) of the former having been built against 1,901 miles (3,059 km) of the latter to that date. The Gauge Act of 1846 forbade the building of any further railways in Britain to any gauge other than 4 ft 8 1/2 in (1.44 m).
    The existence of long and severe gradients on the South Devon Railway led to Brunel's adoption of the atmospheric railway developed by Samuel Clegg and later by the Samuda brothers. In this a pipe of 9 in. (23 cm) or more in diameter was laid between the rails, along the top of which ran a continuous hinged flap of leather backed with iron. At intervals of about 3 miles (4.8 km) were pumping stations to exhaust the pipe. Much trouble was experienced with the flap valve and its lubrication—freezing of the leather in winter, the lubricant being sucked into the pipe or eaten by rats at other times—and the experiment was abandoned at considerable cost.
    Brunel is to be remembered for his two great West Country tubular bridges, the Chepstow and the Tamar Bridge at Saltash, with the latter opened in May 1859, having two main spans of 465 ft (142 m) and a central pier extending 80 ft (24 m) below high water mark and allowing 100 ft (30 m) of headroom above the same. His timber viaducts throughout Devon and Cornwall became a feature of the landscape. The line was extended ultimately to Penzance.
    As early as 1835 Brunel had the idea of extending the line westwards across the Atlantic from Bristol to New York by means of a steamship. In 1836 building commenced and the hull left Bristol in July 1837 for fitting out at Wapping. On 31 March 1838 the ship left again for Bristol but the boiler lagging caught fire and Brunel was injured in the subsequent confusion. On 8 April the ship set sail for New York (under steam), its rival, the 703-ton Sirius, having left four days earlier. The 1,340-ton Great Western arrived only a few hours after the Sirius. The hull was of wood, and was copper-sheathed. In 1838 Brunel planned a larger ship, some 3,000 tons, the Great Britain, which was to have an iron hull.
    The Great Britain was screwdriven and was launched on 19 July 1843,289 ft (88 m) long by 51 ft (15.5 m) at its widest. The ship's first voyage, from Liverpool to New York, began on 26 August 1845. In 1846 it ran aground in Dundrum Bay, County Down, and was later sold for use on the Australian run, on which it sailed no fewer than thirty-two times in twenty-three years, also serving as a troop-ship in the Crimean War. During this war, Brunel designed a 1,000-bed hospital which was shipped out to Renkioi ready for assembly and complete with shower-baths and vapour-baths with printed instructions on how to use them, beds and bedding and water closets with a supply of toilet paper! Brunel's last, largest and most extravagantly conceived ship was the Great Leviathan, eventually named The Great Eastern, which had a double-skinned iron hull, together with both paddles and screw propeller. Brunel designed the ship to carry sufficient coal for the round trip to Australia without refuelling, thus saving the need for and the cost of bunkering, as there were then few bunkering ports throughout the world. The ship's construction was started by John Scott Russell in his yard at Millwall on the Thames, but the building was completed by Brunel due to Russell's bankruptcy in 1856. The hull of the huge vessel was laid down so as to be launched sideways into the river and then to be floated on the tide. Brunel's plan for hydraulic launching gear had been turned down by the directors on the grounds of cost, an economy that proved false in the event. The sideways launch with over 4,000 tons of hydraulic power together with steam winches and floating tugs on the river took over two months, from 3 November 1857 until 13 January 1858. The ship was 680 ft (207 m) long, 83 ft (25 m) beam and 58 ft (18 m) deep; the screw was 24 ft (7.3 m) in diameter and paddles 60 ft (18.3 m) in diameter. Its displacement was 32,000 tons (32,500 tonnes).
    The strain of overwork and the huge responsibilities that lay on Brunel began to tell. He was diagnosed as suffering from Bright's disease, or nephritis, and spent the winter travelling in the Mediterranean and Egypt, returning to England in May 1859. On 5 September he suffered a stroke which left him partially paralysed, and he died ten days later at his Duke Street home.
    [br]
    Further Reading
    L.T.C.Rolt, 1957, Isambard Kingdom Brunel, London: Longmans Green. J.Dugan, 1953, The Great Iron Ship, Hamish Hamilton.
    IMcN

    Biographical history of technology > Brunel, Isambard Kingdom

  • 13 Popoff, Andrei Alexandrovitch

    SUBJECT AREA: Ports and shipping
    [br]
    b. 21 September 1821 Russia
    d. 6 March 1898 Russia
    [br]
    Russian admiral and naval constructor involved in the building of unusual warships.
    [br]
    After graduating from the Naval School Popoff served in the Russian Navy, ultimately commanding the cruiser Meteor. During the Crimean War he was Captain of a steamship and was later Manager of Artillery Supplies at Sevastopol. At the conclusion of the war he was appointed to supervise the construction of all steamships and so started his real career in naval procurement. For the best part of thirty years he oversaw the Russian naval building programme, producing many new ships at St Petersburg. Probably the finest was the battleship Petr Veliki (Peter the Great), of 9,000 tons displacement, built at Galernii Island in 1869. With some major refits the ship remained in the fleet until 1922. Two remarkable ships were produced at St Petersburg, the Novgorod and the Vice Admiral Popoff in 1874 and 1876, respectively. Their hull form was almost circular in the hope of creating stable and steady gun platforms and to lessen the required depth of water for their duties as defence ships in the shallow waters of the Black Sea and the Sea of Azov. Despite support for the idea from Sir Edward Reed of the Royal Navy, the designs failed owing to unpleasant oscillations and poor manoeuvring qualities. One further attempt was made to find a successful outcome to this good idea in the construction of the Russian Imperial Yacht Livadia at Elder's Glasgow shipyard in 1880: for many reasons the Livadia never fulfilled her purpose. Despite their great advantages, the age of the Popoffkas was over. Popoff had a remarkable effect on Russian shipbuilding and warship design. He had authority, and used it wisely at a time when the Russian shipbuilding industry was developing quickly.
    [br]
    Principal Honours and Distinctions
    Honorary Associate of the Institution of Naval Architects, London.
    Further Reading
    Fred T.Jane, 1899, The Imperial Russian Navy, London.
    AK / FMW

    Biographical history of technology > Popoff, Andrei Alexandrovitch

  • 14 Whitworth, Sir Joseph

    [br]
    b. 21 December 1803 Stockport, Cheshire, England
    d. 22 January 1887 Monte Carlo, Monaco
    [br]
    English mechanical engineer and pioneer of precision measurement.
    [br]
    Joseph Whitworth received his early education in a school kept by his father, but from the age of 12 he attended a school near Leeds. At 14 he joined his uncle's mill near Ambergate, Derbyshire, to learn the business of cotton spinning. In the four years he spent there he realized that he was more interested in the machinery than in managing a cotton mill. In 1821 he obtained employment as a mechanic with Crighton \& Co., Manchester. In 1825 he moved to London and worked for Henry Maudslay and later for the Holtzapffels and Joseph Clement. After these years spent gaining experience, he returned to Manchester in 1833 and set up in a small workshop under a sign "Joseph Whitworth, Tool Maker, from London".
    The business expanded steadily and the firm made machine tools of all types and other engineering products including steam engines. From 1834 Whitworth obtained many patents in the fields of machine tools, textile and knitting machinery and road-sweeping machines. By 1851 the company was generally regarded as the leading manufacturer of machine tools in the country. Whitworth was a pioneer of precise measurement and demonstrated the fundamental mode of producing a true plane by making surface plates in sets of three. He advocated the use of the decimal system and made use of limit gauges, and he established a standard screw thread which was adopted as the national standard. In 1853 Whitworth visited America as a member of a Royal Commission and reported on American industry. At the time of the Crimean War in 1854 he was asked to provide machinery for manufacturing rifles and this led him to design an improved rifle of his own. Although tests in 1857 showed this to be much superior to all others, it was not adopted by the War Office. Whitworth's experiments with small arms led on to the construction of big guns and projectiles. To improve the quality of the steel used for these guns, he subjected the molten metal to pressure during its solidification, this fluid-compressed steel being then known as "Whitworth steel".
    In 1868 Whitworth established thirty annual scholarships for engineering students. After his death his executors permanently endowed the Whitworth Scholarships and distributed his estate of nearly half a million pounds to various educational and charitable institutions. Whitworth was elected an Associate of the Institution of Civil Engineers in 1841 and a Member in 1848 and served on its Council for many years. He was elected a Member of the Institution of Mechanical Engineers in 1847, the year of its foundation.
    [br]
    Principal Honours and Distinctions
    Baronet 1869. FRS 1857. President, Institution of Mechanical Engineers 1856, 1857 and 1866. Hon. LLD Trinity College, Dublin, 1863. Hon. DCL Oxford University 1868. Member of the Smeatonian Society of Civil Engineers 1864. Légion d'honneur 1868. Society of Arts Albert Medal 1868.
    Bibliography
    1858, Miscellaneous Papers on Mechanical Subjects, London; 1873, Miscellaneous Papers on Practical Subjects: Guns and Steel, London (both are collections of his papers to technical societies).
    1854, with G.Wallis, The Industry of the United States in Machinery, Manufactures, and
    Useful and Ornamental Arts, London.
    Further Reading
    F.C.Lea, 1946, A Pioneer of Mechanical Engineering: Sir Joseph Whitworth, London (a short biographical account).
    A.E.Musson, 1963, "Joseph Whitworth: toolmaker and manufacturer", Engineering Heritage, Vol. 1, London, 124–9 (a short biography).
    D.J.Jeremy (ed.), 1984–6, Dictionary of Business Biography, Vol. 5, London, 797–802 (a short biography).
    W.Steeds, 1969, A History of Machine Tools 1700–1910, Oxford (describes Whitworth's machine tools).
    RTS

    Biographical history of technology > Whitworth, Sir Joseph

  • 15 Bessemer, Sir Henry

    SUBJECT AREA: Metallurgy
    [br]
    b. 19 January 1813 Charlton (near Hitchin), Hertfordshire, England
    d. 15 January 1898 Denmark Hill, London, England
    [br]
    English inventor of the Bessemer steelmaking process.
    [br]
    The most valuable part of Bessemer's education took place in the workshop of his inventor father. At the age of only 17 he went to London to seek his fortune and set himself up in the trade of casting art works in white metal. He went on to the embossing of metals and other materials and this led to his first major invention, whereby a date was incorporated in the die for embossing seals, thus preventing the wholesale forgeries that had previously been committed. For this, a grateful Government promised Bessemer a paid position, a promise that was never kept; recognition came only in 1879 with a belated knighthood. Bessemer turned to other inventions, mainly in metalworking, including a process for making bronze powder and gold paint. After he had overcome technical problems, the process became highly profitable, earning him a considerable income during the forty years it was in use.
    The Crimean War presented inventors such as Bessemer with a challenge when weaknesses in the iron used to make the cannon became apparent. In 1856, at his Baxter House premises in St Paneras, London, he tried fusing cast iron with steel. Noticing the effect of an air current on the molten mixture, he constructed a reaction vessel or converter in which air was blown through molten cast iron. There was a vigorous reaction which nearly burned the house down, and Bessemer found the iron to be almost completely decarburized, without the slag threads always present in wrought iron. Bessemer had in fact invented not only a new process but a new material, mild steel. His paper "On the manufacture of malleable iron and steel without fuel" at the British Association meeting in Cheltenham later that year created a stir. Bessemer was courted by ironmasters to license the process. However, success was short-lived, for they found that phosphorus in the original iron ore passed into the metal and rendered it useless. By chance, Bessemer had used in his trials pig-iron, derived from haematite, a phosphorus-free ore. Bessemer tried hard to overcome the problem, but lacking chemical knowledge he resigned himself to limiting his process to this kind of pig-iron. This limitation was removed in 1879 by Sidney Gilchrist Thomas, who substituted a chemically basic lining in the converter in place of the acid lining used by Bessemer. This reacted with the phosphorus to form a substance that could be tapped off with the slag, leaving the steel free from this harmful element. Even so, the new material had begun to be applied in engineering, especially for railways. The open-hearth process developed by Siemens and the Martin brothers complemented rather than competed with Bessemer steel. The widespread use of the two processes had a revolutionary effect on mechanical and structural engineering and earned Bessemer around £1 million in royalties before the patents expired.
    [br]
    Principal Honours and Distinctions
    Knighted 1879. FRS 1879. Royal Society of Arts Albert Gold Medal 1872.
    Bibliography
    1905, Sir Henry Bessemer FRS: An Autobiography, London.
    LRD

    Biographical history of technology > Bessemer, Sir Henry

  • 16 Fairbairn, Sir Peter

    SUBJECT AREA: Textiles
    [br]
    b. September 1799 Kelso, Roxburghshire, Scotland
    d. 4 January 1861 Leeds, Yorkshire, England
    [br]
    British inventor of the revolving tube between drafting rollers to give false twist.
    [br]
    Born of Scottish parents, Fairbairn was apprenticed at the age of 14 to John Casson, a mill-wright and engineer at the Percy Main Colliery, Newcastle upon Tyne, and remained there until 1821 when he went to work for his brother William in Manchester. After going to various other places, including Messrs Rennie in London and on the European continent, he eventually moved in 1829 to Leeds where Marshall helped him set up the Wellington Foundry and so laid the foundations for the colossal establishment which was to employ over one thousand workers. To begin with he devoted his attention to improving wool-weaving machinery, substituting iron for wood in the construction of the textile machines. He also worked on machinery for flax, incorporating many of Philippe de Girard's ideas. He assisted Henry Houldsworth in the application of the differential to roving frames, and it was to these machines that he added his own inventions. The longer fibres of wool and flax need to have some form of support and control between the rollers when they are being drawn out, and inserting a little twist helps. However, if the roving is too tightly twisted before passing through the first pair of rollers, it cannot be drawn out, while if there is insufficient twist, the fibres do not receive enough support in the drafting zone. One solution is to twist the fibres together while they are actually in the drafting zone between the rollers. In 1834, Fairbairn patented an arrangement consisting of a revolving tube placed between the drawing rollers. The tube inserted a "middle" or "false" twist in the material. As stated in the specification, it was "a well-known contrivance… for twisting and untwisting any roving passing through it". It had been used earlier in 1822 by J. Goulding of the USA and a similar idea had been developed by C.Danforth in America and patented in Britain in 1825 by J.C. Dyer. Fairbairn's machine, however, was said to make a very superior article. He was also involved with waste-silk spinning and rope-yarn machinery.
    Fairbairn later began constructing machine tools, and at the beginning of the Crimean War was asked by the Government to make special tools for the manufacture of armaments. He supplied some of these, such as cannon rifling machines, to the arsenals at Woolwich and Enfield. He then made a considerable number of tools for the manufacture of the Armstrong gun. He was involved in the life of his adopted city and was elected to Leeds town council in 1832 for ten years. He was elected an alderman in 1854 and was Mayor of Leeds from 1857 to 1859, when he was knighted by Queen Victoria at the opening of the new town hall. He was twice married, first to Margaret Kennedy and then to Rachel Anne Brindling.
    [br]
    Principal Honours and Distinctions
    Knighted 1858.
    Bibliography
    1834, British patent no. 6,741 (revolving tube between drafting rollers to give false twist).
    Further Reading
    Dictionary of National Biography.
    Obituary, 1861, Engineer 11.
    W.English, 1969, The Textile Industry, London (provides a brief account of Fairbairn's revolving tube).
    C.Singer (ed.), 1958, A History of Technology, Vols IV and V, Oxford: Clarendon Press (provides details of Fairbairn's silk-dressing machine and a picture of a large planing machine built by him).
    RLH

    Biographical history of technology > Fairbairn, Sir Peter

  • 17 Harris, Alanson

    [br]
    b. 1816 Ingersoll, Ontario, Canada
    d. 1894 Canada
    [br]
    Canadian manufacturer of agricultural machinery and co-founder of the Massey Harris Company (later Massey Ferguson).
    [br]
    Alanson Harris was the first often children born to the wife of a circuit rider and preacher. His father's wanderings left Alanson at an early age in charge of the running of the family farm on the Grand River in Canada; also, his father's preference was for tinkering with machines rather than for farming. However, when he was 13 Alanson had to go out to work in order to bring badly needed cash to augment the family income. He worked at a sawmill in the small village of Boston, becoming Boss Sawyer and then Foreman after ten years. In 1839 the family moved to Mount Pleasant, and the following year Alanson married Mary Morgan, the daughter of a well-to-do pioneer Welsh farmer. He entered into a brief partnership with his father to build a sawmill at Whiteman's Creek, but within a few months his father returned to preaching and Alanson became the sole proprietor. After a successful early period Alanson recognized the signs of decline in the timber market, and in 1857 he sold the mill, moved to Beamsville, Niagara, and bought a small factory from which he produced the flop-over hay rake invented by his father. In 1863 he took his eldest son into partnership; the latter returned from a visit to the United States with the sole rights to produce the Kirby mower and reaper. The Crimean War created a market for corn, which gave a great boost to North American farming and, in its turn, to machinery production. This was reinforced by the tariff agreements between the United States and Canada. By the 1880s Harris and Massey between them accounted for two thirds of the harvesting machines sold in Canada, and they also supplied machines abroad. By the end of the decade the mutual benefits of joining forces were apparent and by 1891 an agreement was reached, with Alanson Harris and A.H.Massey on the first board.
    [br]
    Further Reading
    G.Quick and W.Buchele, 1978, The Grain Harvesters, American Society of Agricultural Engineers (refers to Harris and Massey Harris Company in its account of the development of harvest machinery).
    M.Denison, 1949, Harvest Triumphant: The Story of Massey Harris, London (gives a more detailed account of Massey Harris Company).
    AP

    Biographical history of technology > Harris, Alanson

  • 18 Türr, Istvan (Stephen, Etienne)

    SUBJECT AREA: Canals, Civil engineering
    [br]
    b. 10 August 1825 Baja, Hungary
    d. 3 May 1908 Budapest, Hungary
    [br]
    Hungarian army officer and canal entrepreneur.
    [br]
    He entered the Austro-Hungarian Imperial Army in 1842 and, as a lieutenant, fought against the Piedmontese in 1848. In January 1849 he deserted to the Piedmontese and tried to form a Hungarian legion against Austria. Defeated at Novara he fled to London and intrigued with Kossuth and Pulszky against Austria. In 1852 he was Kossuth's agent in Italy and was involved with Mazzini in the Milan rising of 1853. He was expelled from Italy and joined the Turkish army as a volunteer until 1854. The Crimean War saw him as a British agent procuring horses in the Balkans for the British forces, but he was caught by the Austrians and sentenced to death as a deserter. Through English intervention the sentence was commuted to banishment. He was ill until 1859, but then returned to Genoa and offered his services to Garibaldi, becoming his Aide-de-Camp in the invasion of Sicily in 1860. On the unification of Italy he joined the regular Italian army as a general, and from 1870 was Honorary Aide-de-Camp to King Victor Emanuel II.
    From then on he was more interested in peaceful projects. Jointly with Lucien Wyse, he obtained a concession in 1875 from the Columbian government to build a canal across Panama and formed the Société Civile Internationale du Canal Interocéanique du Darien. In 1879 he sold the concession to de Lesseps, and with the money negotiated a concession from King George of Greece for building the Corinth Canal. A French company undertook the work in April 1882, but financial problems led to the collapse of the company in 1889, at the same time as de Lesseps's financial storm. A Greek company then took over and completed the canal in 1893.
    The canal was formally opened on 6 August 1893 by King George on his royal yacht; the king paid tribute to General Turr, who was accompanying him, saying that he had completed the work the Romans had begun. The general's later years were devoted to peace propaganda and he attended every peace conference held during those years.
    JHB

    Biographical history of technology > Türr, Istvan (Stephen, Etienne)

  • 19 Nightingale, Florence

    SUBJECT AREA: Medical technology
    [br]
    b. 15 May 1820 Florence, Italy
    d. 13 August 1910 London, England
    [br]
    English nurse, pioneer of the reform of nursing, hospital organization and technology.
    [br]
    Dedicated to the relief of suffering, Florence Nightingale spent her early years visiting civil and military hospitals all over Europe. She then attended a course of formal training at Kaiserwerth in Germany and with the Sisters of St Vincent de Paul in Paris.
    She had returned to London and was managing, after having reformed, a hostel for invalid gentlewomen when in 1854 the appalling conditions of the wounded in Turkey during the Crimean War led to her taking a party of thirty-eight nurses out to Scutari. The application of principles of hygiene and sanitation resulted in dramatic improvements in conditions and on her return to England in 1856 she applied the large sums which had been raised in her honour to the founding in 1861 of the St Thomas's School of Nursing.
    From this base she acted as adviser, goad and promoter of sound nursing common sense for the remainder of a long life marred by a chronic invalidism quite out of keeping with the rigorousness of her role in the nursing field. It was not only in the training and conduct of nursing that her influence was primal. Many concepts of hospital technology relating to hygiene, ventilation and ward design are to be attributed to her forthright common sense. The "Nightingale ward", for a time the target of progressive reformers, has been shown still to have abiding virtues.
    [br]
    Principal Honours and Distinctions
    Order of Merit 1907.
    Bibliography
    1858, Notes on Nursing.
    1899, Notes on Hospitals.
    Further Reading
    C.Woodham-Smith, 1949, Florence Nightingale, London.
    MG

    Biographical history of technology > Nightingale, Florence

  • 20 Crimea

    Cri·mea [kraɪʼmi:ə] n
    the \Crimea die Krim;
    the \Crimean War der Krimkrieg

    English-German students dictionary > Crimea

См. также в других словарях:

  • (the) Crimean War — the Crimean War [the Crimean War] a war fought by Britain, France and Turkey against Russia between 1853 and 1856 in the Crimea, a part of the Ukraine. Russia wanted power over Turkey, and Britain and France wanted to end Russia’s power in the… …   Useful english dictionary

  • Crimean War Memorial — United Kingdom For Vict …   Wikipedia

  • Crimean War (disambiguation) — The Crimean War may refer to three conflicts in the Crimea: the Crimean War in the 1850s, Russo Crimean Wars between Russia and the Crimean Khanate Crimean campaigns of 1687 and 1689 part of these wars Crimean Campaign (1941–1942) a WWII German… …   Wikipedia

  • Crimean War —    The Crimean War (1854 55) was a conflict between Russia and a coalition consisting of Turkey, Great Britain, France, and Sardinia that ended with the defeat of Russia and the signing of the Treaty of Paris (1856). The rival ambitions of Russia …   France. A reference guide from Renaissance to the Present

  • Crimean War — For other uses, see Crimean War (disambiguation). Crimean War Part of Ottoman wars in Europe Detail of …   Wikipedia

  • Crimean War Research Society — Logo of the Crimean War Research Society The Crimean War Research Society (CWRS) is an international society of professional and amateur historians who research the Crimean War of 1854 56. The Society aims to bring previously unpublished or under …   Wikipedia

  • Crimean War — (1853–1856)    A Great Power conflict occurring midway between the Napoleonic Wars and World War I; it pitted the Ottoman Empire and its allies Britain, France, and Sardinia against the Russian Empire. The war had many causes, among which were… …   Encyclopedia of the Age of Imperialism, 1800–1914

  • Crimean war —    Russian diplomacy in the early 1850s played a critical role in isolating Russia in the first general European war since Waterloo. Disputes over European issues and the question of which country controlled sites in the Holy Land precipitated a… …   Historical dictionary of Russian and Soviet Intelligence

  • Crimean War — a war between Great Britain, France, Turkey, and Sardinia on one side, and Russia on the other, fought chiefly in the Crimea 1853 56. * * * (October 1853–February 1856) War fought mainly in the Crimea between the Russians and an alliance… …   Universalium

  • Crimean War medal — may refer to: British Crimean War Medal Turkish Crimean War medal Baltic Medal, awarded for naval operations in the Baltic This disambiguation page lists articles associated with the same title. If an …   Wikipedia

  • Crimean War — Crimean War, the (1853 56) a war between Russia on one side, and Britain, France, Turkey, and Sardinia on the other. It started because Britain and France believed that Russia intended to take control of the Balkans (=southeast Europe) , and it… …   Dictionary of contemporary English

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»